Edge Computing in Age of Machine Learning and Energy Constraints

Presenter: Klara Nahrstedt (klara@illinois.edu)

Siebel School of Computing and Data Science University of Illinois Urbana-Champaign

е

Outline

- Motivation
- Federated Learning Training Description
- BoFL
 - Problem Statement
 - Solution and Evaluation
- FedCore
 - Problem Statement
 - Solution and Evaluation
- Conclusion

Large scale Machine Learning Systems

ML Training System

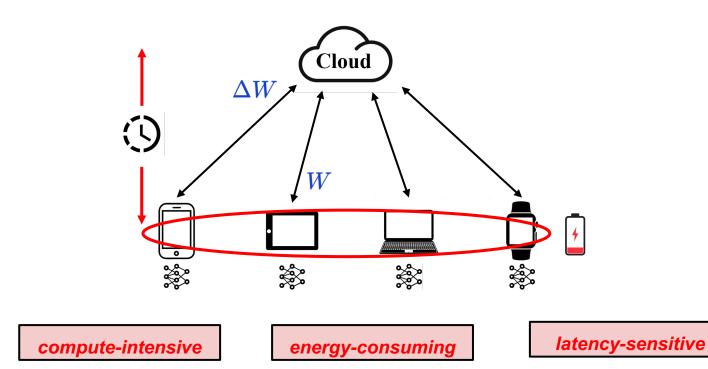
City-scale Surveillance Video Analysis

World-scale Question Answering Services

Large-scale Healthcare Model Training

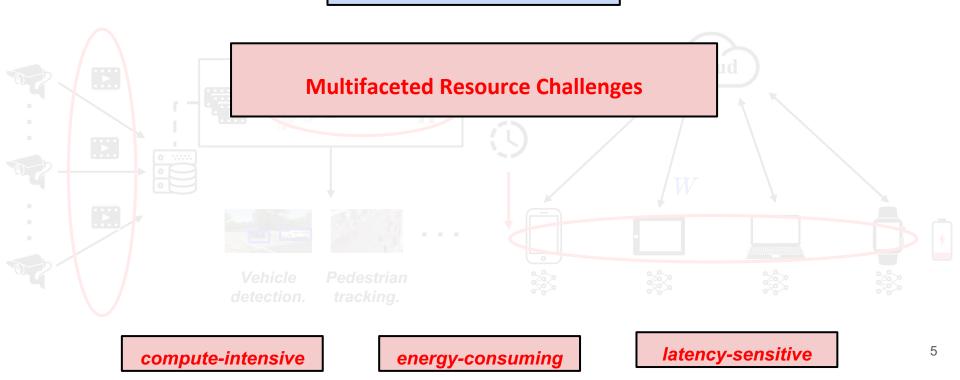
Multifaceted Challenges of Federated Lerning Training Systems

Federated Learning Systems (Training)



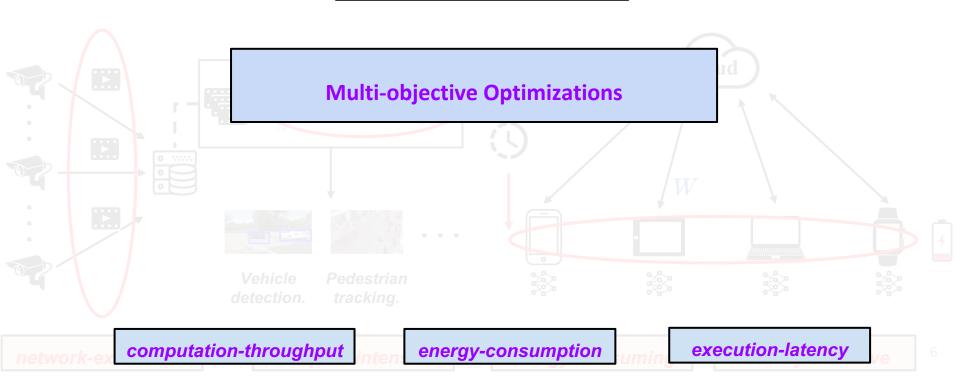
Multifaceted Challenges of Federated Lerning Training Systems

Federated Learning Systems

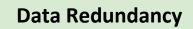


Multifaceted Challenges of Federated Lerning Training Systems

Federated Learning Systems



Optimization Opportunities in ML Training Systems



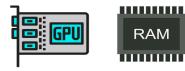
Hardware Configurability

ML Model Sparsity

- Frame Filtering
- Video Compression
- Resolutions & Bitrates
- •

...

bandwidth



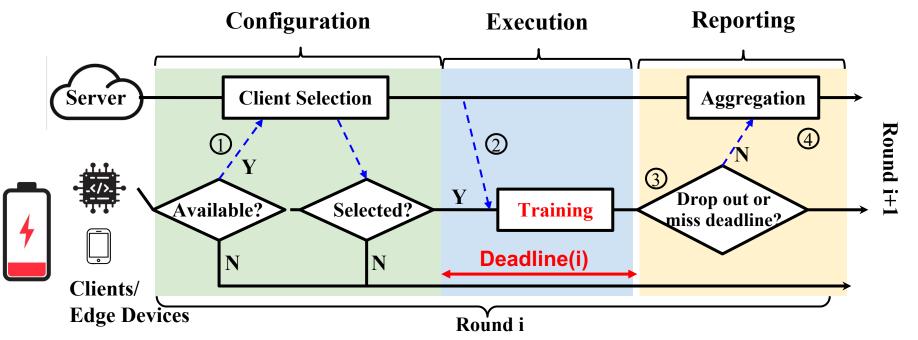
- Voltages
- Frequencies
- Heterogeneity
- ...

- Quantization
- Model Pruning
- Gradient Compression
- ...

Outline

- Motivation
- Federated Learning Training Description
- BoFL
 - Problem Statement
 - Solution and Evaluation
- FedCore
 - Problem Statement
 - Solution and Evaluation
- Conclusion

Federated Learning Workflow



(3)

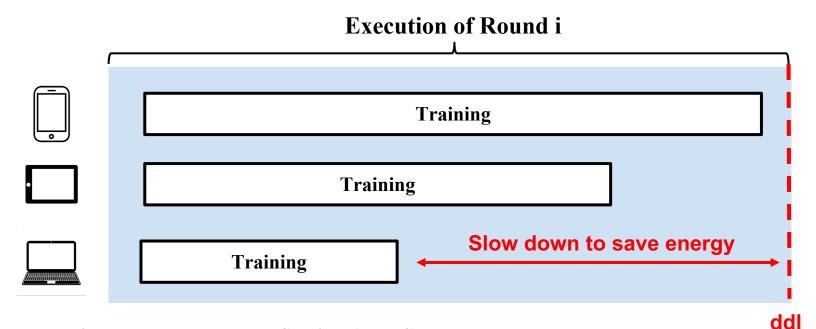
- Device check-in with server; then the server selects a subset of clients
- Model and training parameters are sent to selected devices

- On-device training is executed; the model gradients are reported if training succeeds
- **A** Server aggregates updates into the global model; training moves to the next round

Outline

- Motivation
- Federated Learning Training Description
- BoFL
 - Problem Statement
 - Solution and Evaluation
- FedCore
 - Problem Statement
 - Solution and Evaluation
- Conclusion

Pace Control with DVFS

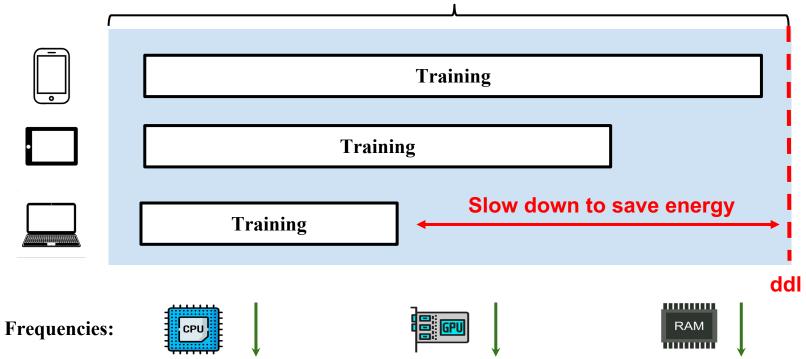


Dynamic Voltage Frequency Scaling (DVFS):

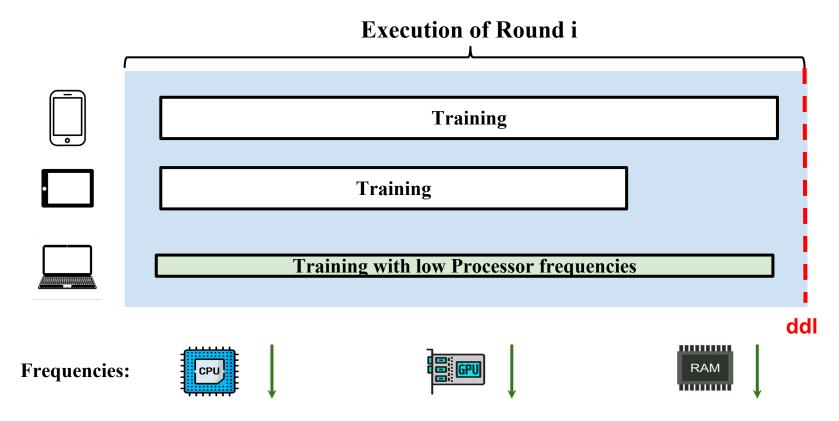
the adjustment of power and speed settings on a computing devices' various processors for power saving when those resources are not needed.

H. Guo et al., "BoFL: Bayesian optimized local training pace control for energy efficient federated learning", **ACM/IFIP Middleware '22**: 23rd ACM/IFIP 11 International Middleware Conference, November 2022

Pace Control with DVFS



Pace Control with DVFS

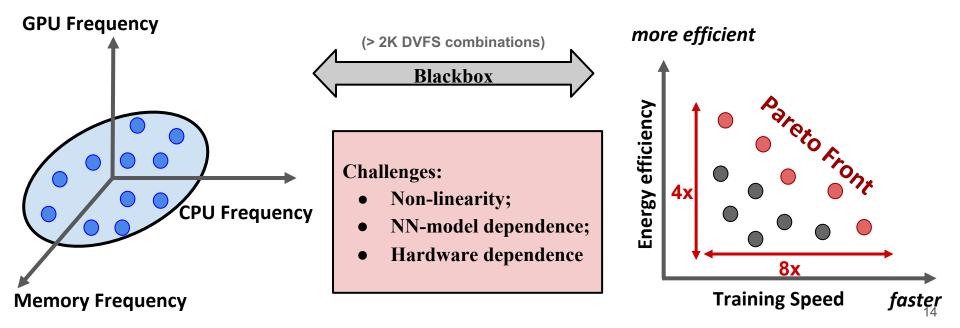


Energy consumption is reduced & Training deadline is satisfied.

Finding the Best Training Pace is Challenging

Question:

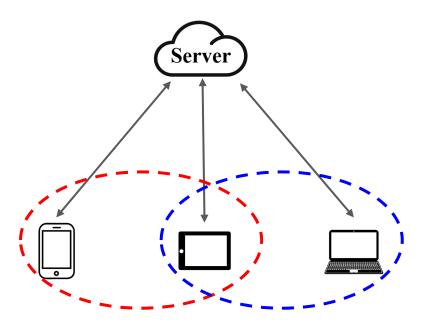
How to select the best DVFS configurations for each round of local model training?



Finding the Best Training Pace is Challenging

Question:

How to select the **best** DVFS configurations for each round of local model training?



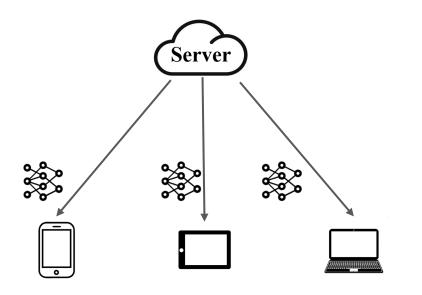
Challenges:

• **Different** execution deadlines for each execution round;

Finding the Best Training Pace is Challenging

Question:

How to select the best DVFS configurations for each round of local model training?



Challenges:

- **Different** execution deadlines for each execution round;
- No access to the NN-model before FL task for performance profiling.

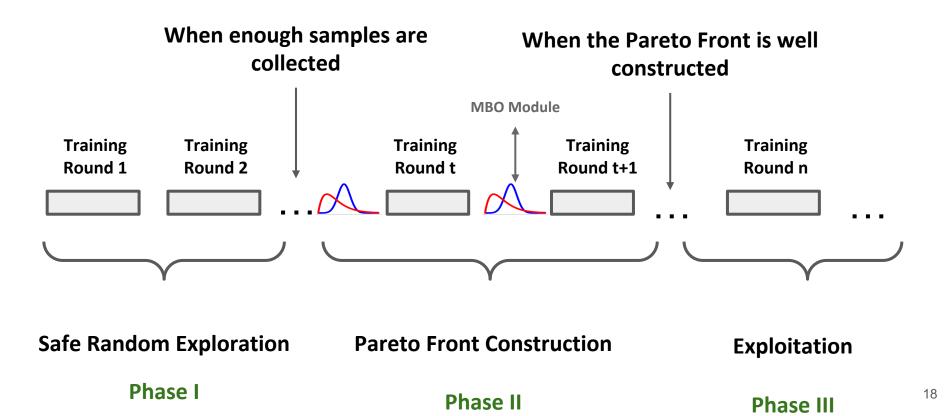
Goal:

Find the Pareto DVFS configurations of a Blackbox optimization in an online form.

Outline

- Motivation
- Federated Learning Training Description
- BoFL
 - Problem Statement
 - Solution and Evaluation
- FedCore
 - Problem Statement
 - Solution and Evaluation
- Conclusion

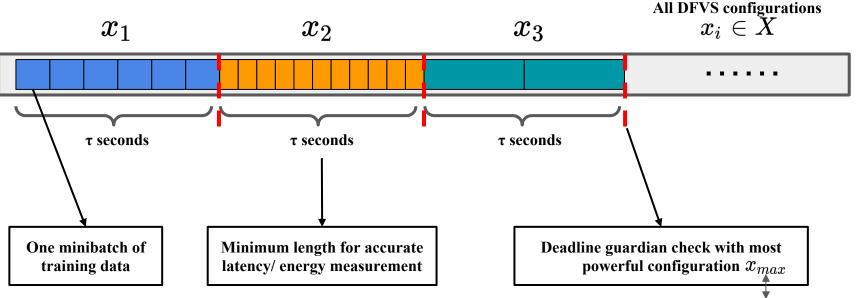
Our Solution: BoFL



BoFL: Safe Random Exploration

The execution length of each FL round usually take several minutes:

- Try to explore as many configurations as possible;
- Make sure to finish all training data before the deadline.



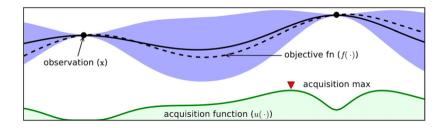
Highest processing capability

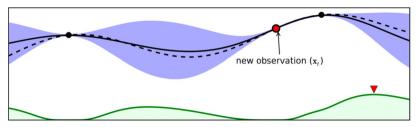
Pareto Construction with Bayesian Optimization

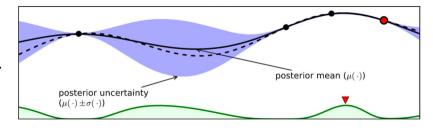
Bayesian optimization (BO) is a sample-efficient methodology for optimizing expensive-to-evaluate black-box functions.

GPU Frequency GPU Frequency Memory Frequency

Multi-Objective Bayesian optimization (MBO)



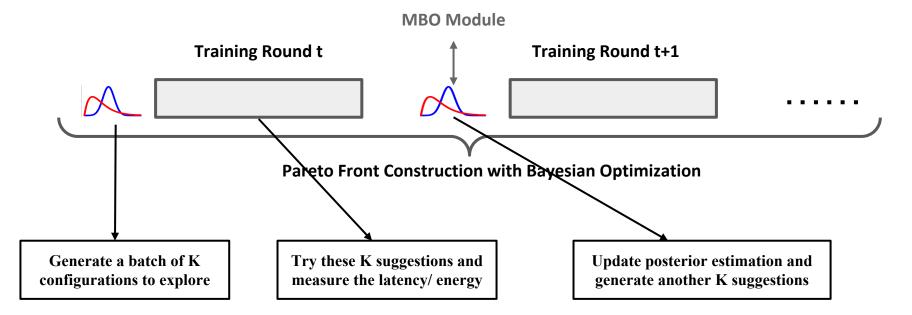




BoFL: Pareto Front Construction

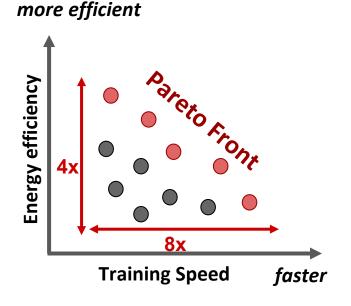
The execution length of each FL round usually takes several minutes:

• Generate batched exploration suggestions.



BoFL: Exploitation

After Pareto Front Construction Phase.



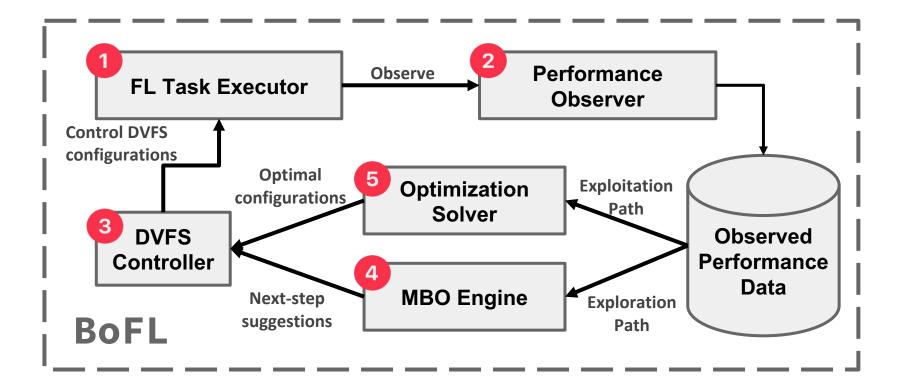
Select configurations from the Pareto Front:

To Minimize energy consumption;

S.T. DDLs are not missed;

An ILP problem that can be efficiently solved

BoFL Architecture



BoFL Evaluation

Hardware Testbeds:

	Jetson AGX	Jetson TX2		
CPU	8-core ARM v8.2	2-core Nvidia Denver2 +		
	o-core ARW Vo.2	4-core ARM Cortex-A57		
Frequencies	$0.42GHz \rightarrow 2.26GHz$	$0.34GHz \rightarrow 2.03GHz$		
	(25 steps)	(12 Steps)		
GPU	512-core Volta GPU	256-core Pascal GPU		
Frequencies	$0.11 \mathrm{GHz} ightarrow 1.38 \mathrm{GHz}$	$0.11 GHz \rightarrow 1.30 GHz$		
	(14 steps)	(13 steps)		
Memory	32GB 256-bit LPDDR4x	8GB 128-bit LPDDR4		
Frequencies	$0.20GHz \rightarrow 2.13GHz$	$0.41 GHz \rightarrow 1.87 GHz$		
	(6 steps)	(6 steps)		
	Jetson AGX	Jetson TX2		

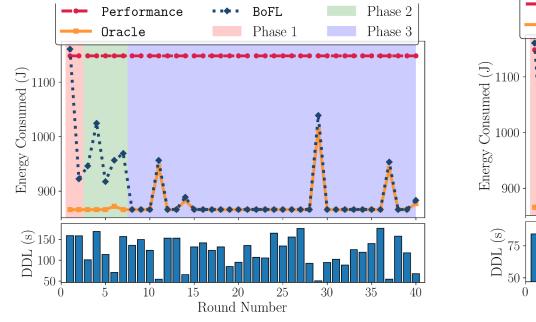
Federated Learning Tasks:

3 different FL task of 100 rounds:

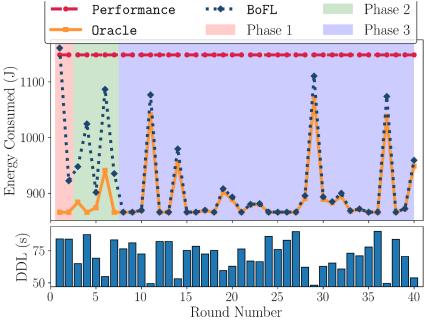
Datasets	NN-Model		
CIFAR10	Vision-Transformer		
ImageNet	ResNet-50		
IMDB	LSTM		

Evaluation of Energy Efficiency

(AGX, ImageNet-ResNet50)



 $ddl_{max} = 4 imes ddl_{min}$

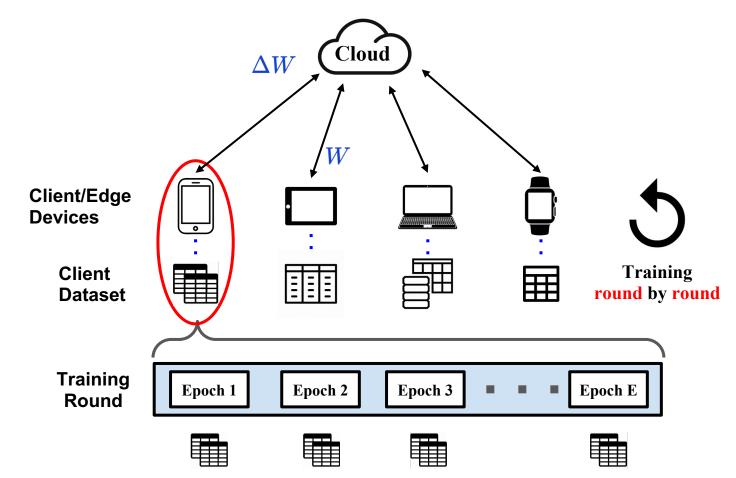


 $ddl_{max} = 2 imes ddl_{min}$

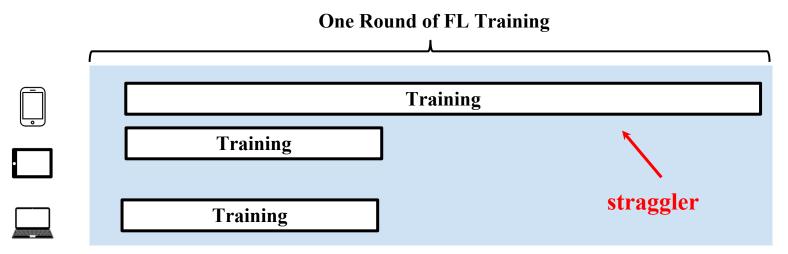
Outline

- Motivation
- Federated Learning Training Description
- BoFL
 - Problem Statement
 - Solution and Evaluation
- FedCore
 - Problem Statement
 - Solution and Evaluation
- Conclusion

Federated Learning System



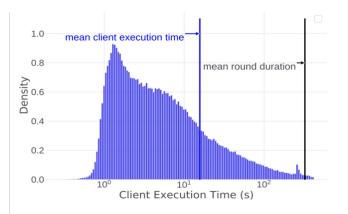
Straggler Effect in FL Systems



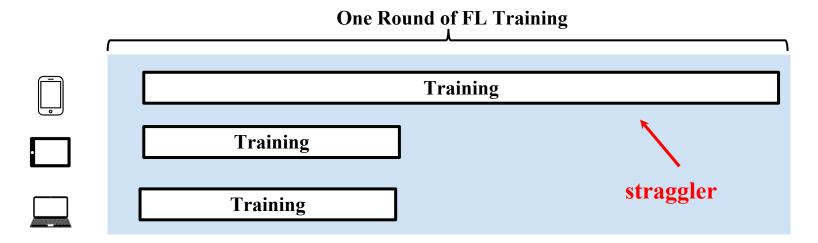
Straggler Problem in Meta's FL systems:

Meta's million-client FL system, Papaya, demonstrated that perclient training time distribution spans over **two orders of magnitude**, and the round completion time is **21x** larger than the average training time due to stragglers' delays.

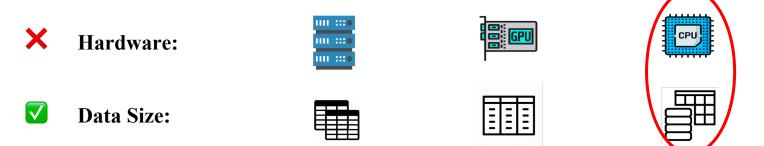
H. Guo et al. "FedCore: Straggler-Free Federated Learning with Distributed Coresets", **IEEE International Conference on Communications (ICC) 2024**, June 2024.



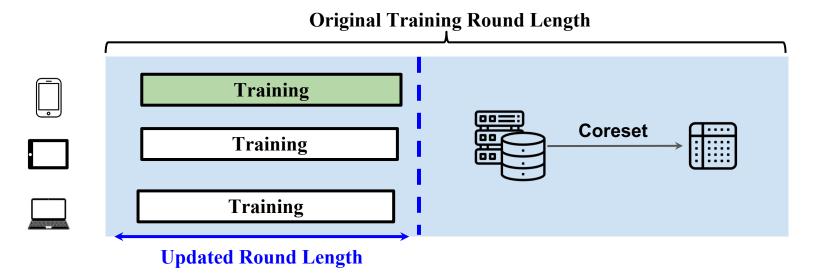
Root Causes of Straggler Problem



Mismatch between clients' computational power and training data size.



Straggler Free FL with Training Coresets

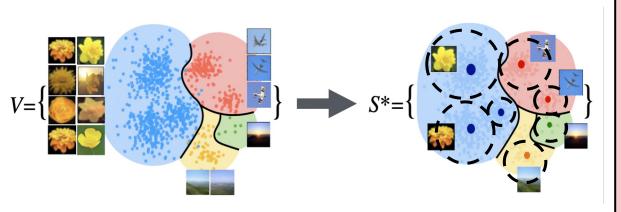


Data Efficient FL with Coreset:

A subset **S** of the whole Training dataset **V**, where the ML model trained on **S**, i.e., Θ s, has similar performance as the model trained on the whole dataset, i.e., Θ v.

Challenges & Solutions

Challenge #1: How to select data samples that best represent the whole dataset?

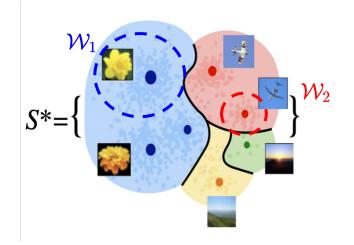


Solutions:

- Cluster training samples based on their per-sample gradient similarities;
- Form a Coreset using the cluster centroids.

Challenges & Solutions

Challenge #1: How to select data samples that best represent the whole dataset?

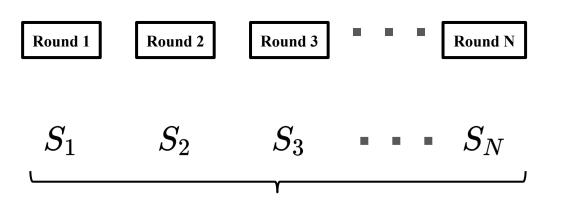


Solutions:

- The coreset is a weighted collection of the cluster centers. Sample weights equal to the corresponding cluster sizes.
- The federated gradient update will be a weighted sum of the coreset gradients.

Challenges & Solutions

Challenge #2: How to adaptively update the Coreset while the model parameters are envolving?



Different Coresets for each round while model is updating.

Solutions:

- Generating per-sample gradients over full-set periodically.
- Update Coreset with the updated gradients.

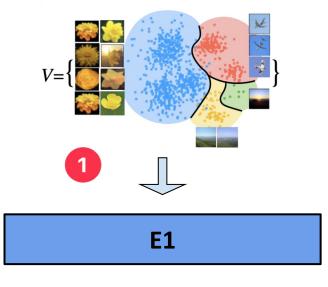
Outline

- Motivation
- Federated Learning Training Description
- BoFL
 - Problem Statement
 - Solution and Evaluation
- FedCore
 - Problem Statement
 - Solution and Evaluation
- Conclusion

FedCore System Overview

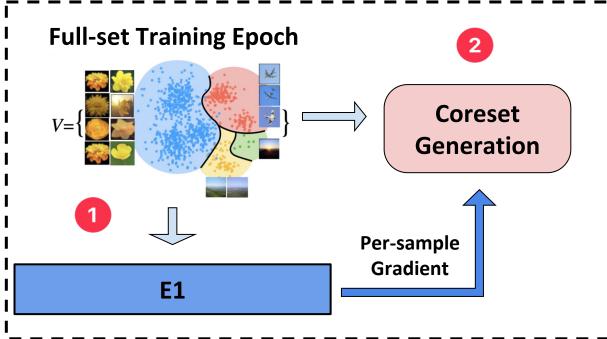
In Each Round of FL Training

Full-set Training Epoch



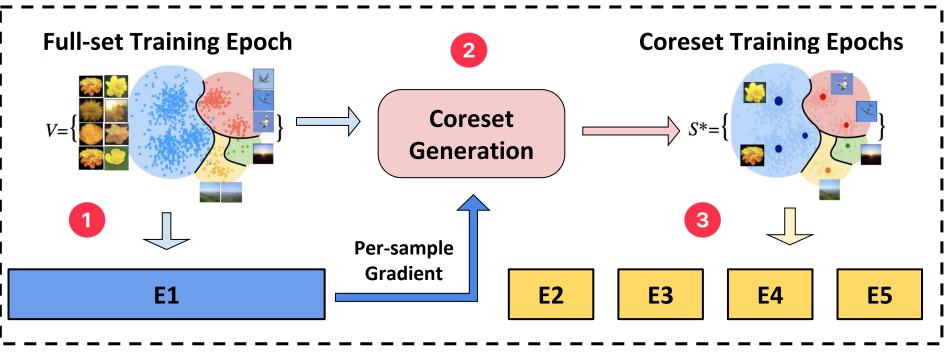
FedCore System Overview

In Each Round of FL Training



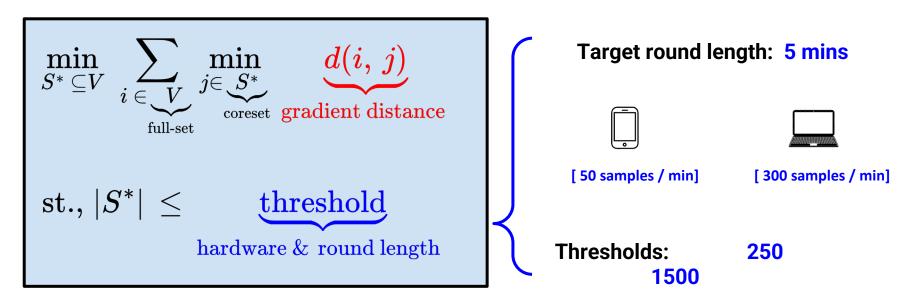
FedCore System Overview

In Each Round of FL Training



Coresets Generation Via Optimization

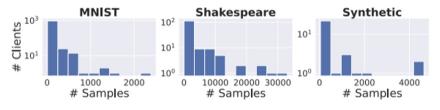
OPT: *K-Medoids Clustering* in the gradient space.



FedCore Evaluation

Statistics of the Evaluation Benchmarks:

Dataset	Clients	Samples	Samples / Client		
Dataset			mean	std	
MNIST	1,000	69,035	69	106	
Shakespare	143	517,106	3,616	6,808	
Synthetic	30	20,101	670	1,148	



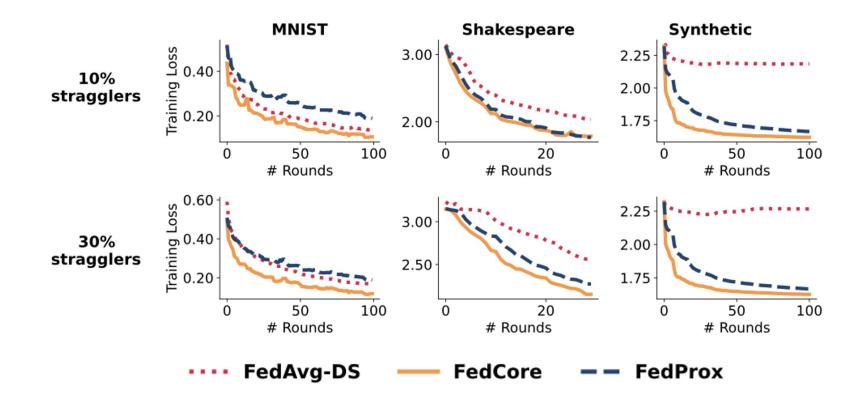
Distribution of training samples per client

- FedAvg [1]: the vanilla FL algorithm without stagger prevention;
- FedAvg-DS: deadline sensitive version of FedAvg, drop all the stragglers;
- FedProx [2]: handles partial training results from stragglers that may finish less epochs before the deadline.

Implementation:

[1] McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." *Artificial intelligence and statistics.* PMLR, 2017. [2] Li, Tian, et al. "Federated optimization in heterogeneous networks." *Proceedings of Machine learning and systems*, 2020.

Evaluation of Training Loss



Evaluation of Accuracy & Training Time

FedCore increases FL training speed by up to 8x without loss of model accuracy

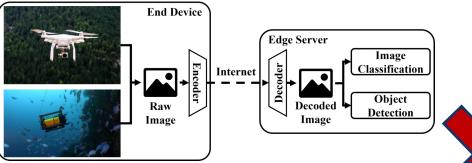
		MNIST		Shakespeare		Synthetic (1, 1)	
		10%	30%	10%	30%	10%	30%
Test Accuracy	FedAvg	94.7		44.9		71.8	
	FedAvg-DS	94.1	93.1	39.0	25.2	23.0	19.9
	FedProx	92.6	92.7	44.1	31.3	72.3	72.2
	FedCore	94.6	94.5	44.7	34.8	72.2	72.8
Mean Training Time per Round (normalized)	FedAvg	3.27	8.48	1.38	4.09	1.37	4.80
	FedAvg-DS	0.94	0.95	0.60	0.67	0.69	0.79
	FedProx	0.98	0.99	0.85	0.94	0.86	0.95
	FedCore	0.99	0.99	0.90	0.99	0.93	0.99

Comparison of test accuracy and training time for FedCore and the Baselines at 10% and 30% stragglers. Bold: top accuracy; Red: exceeded deadline. Normalized time of 1 is round deadline.

Outline

- Motivation
- Federated Learning Training Description
- BoFL
 - Problem Statement
 - Solution and Evaluation
- FedCore
 - Problem Statement
 - Solution and Evaluation
- Conclusion

Conclusion – Other Edge Apps - Visual Analytics



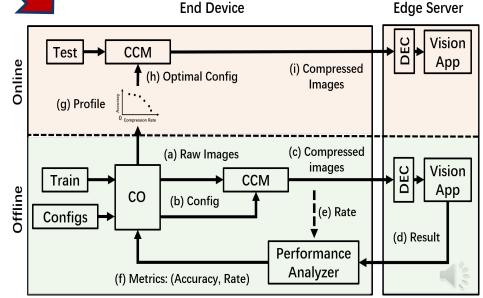
Efficient image compression is critical.

Two Stages:

- Offline Profiling: CO interacts with CCM and vision app to derive profile (g)
- Online Compression: CCM selects optimal configuration (h) from profile (g) based on bandwidth condition or accuracy requirement

B. Chen, Z. Yan, K. Nahrstedt "Context-aware Image Compression Optimization for Visual Analytics Offloading", ACM MMSys 2022, **Best Paper Award**

- Contextualized Compression Module (CCM): compression based on context
- Compression Optimizer (CO): derive a profile assisting CCM



Acknowledgement

Joint work: Hongpeng Guo¹, Haotian Gu², Zhe Yang¹, Xiaoyang Wang¹, Eun Kyung Lee³, Nandhini Chandramoorthy³, Tamar Eilam³, Deming Chen¹

Funding: IBM Illinois Discovery Accelerator Institute (IIDAI), 2021-2031 at University of Illinois Urbana-Champaign

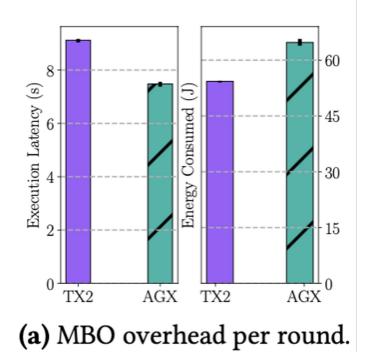
Publications:

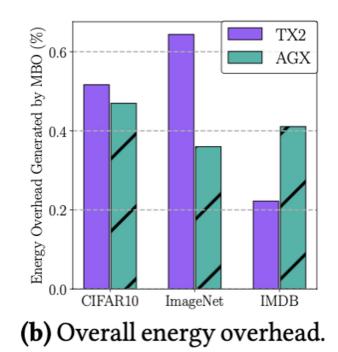
H. Guo et al., "BoFL: Bayesian optimized local training pace control for energy efficient federated learning", ACM/IFIP Middleware '22: 23rd ACM/IFIP International Middleware Conference, November 2022,

H. Guo et al., "FedCore: Straggler-Free Federated Learning with Distributed Coresets", IEEE International Conference on Communications (ICC) 2024, June 2024.

Additional Slides

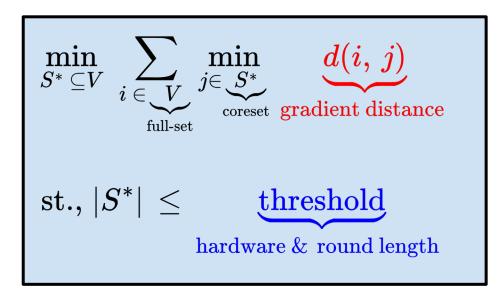
BoFL Evaluation of System Overhead





FedCore Coresets Generation Via Optimization

OPT: *K*-*Medoids Clustering* in the gradient space.



- OPT is applied to each client to create distributed coresets.
- OPT can be solved with *FasterPAM* [1]. The cluster centers form a coreset.

$$egin{aligned} &\mathrm{If}\,\|\mathrm{OPT}\|\,\leq\epsilon\,\mathrm{holds}\ \mathrm{for}\ \mathrm{every}\ \mathrm{client},\,\mathrm{every}\ \mathrm{round}\colon\ &\mathbb{E}[\mathcal{L}(w_{fedcore})-\mathcal{L}(w_*)]\leq\mathcal{O}(\epsilon)+\mathcal{O}\!\left(1/\underbrace{\mathcal{R}}_{training\ rounds}
ight) \end{aligned}$$